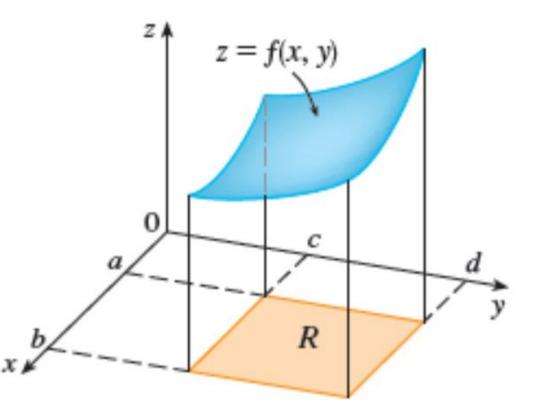
Section 15.2: Double Integrals Over General Regions What We'll Learn In Section 15.2

1. Double Integrals Over General Regions

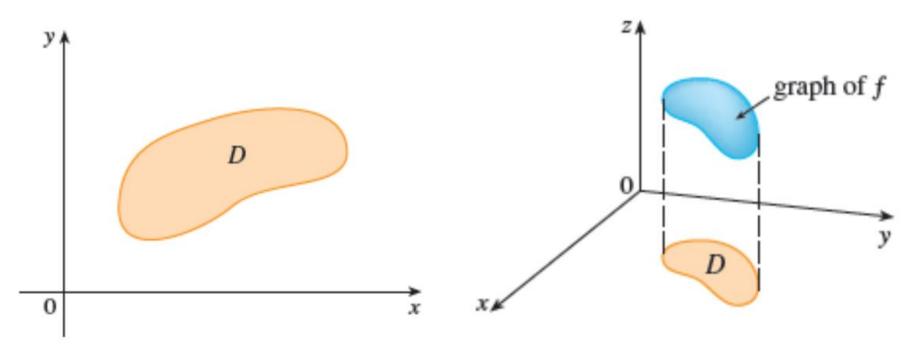
In section 15.1, we learned how to integrate a 2-variable function f(x, y) over a rectangle $R = \{ (x, y) \mid a \le x \le b, c \le y \le d \}.$

 $\iint_{D} f(x,y) \, dA$



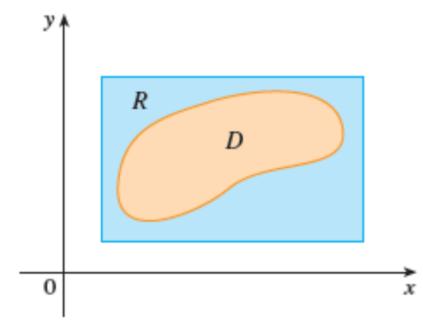
Now, we want to integrate a 2-variable function f(x, y) over a general (compact) region D.

$$\iint_D f(x,y) \, dA$$



Now, we want to integrate a 2-variable function f(x, y) over a general (compact) region D. How?

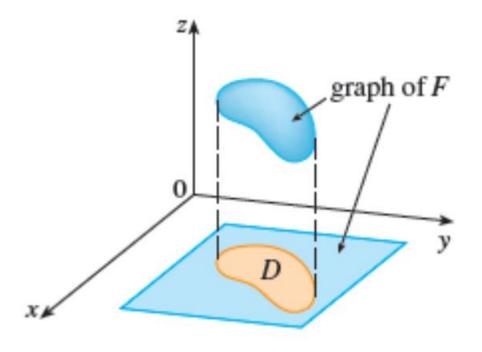
1. Draw a rectangle around D



- Now, we want to integrate a 2-variable function f(x, y) over a general (compact) region *D*. How?
- 2. Extend the definition of f to the entire rectangle by defining another 2-variable function F(x, y) by...

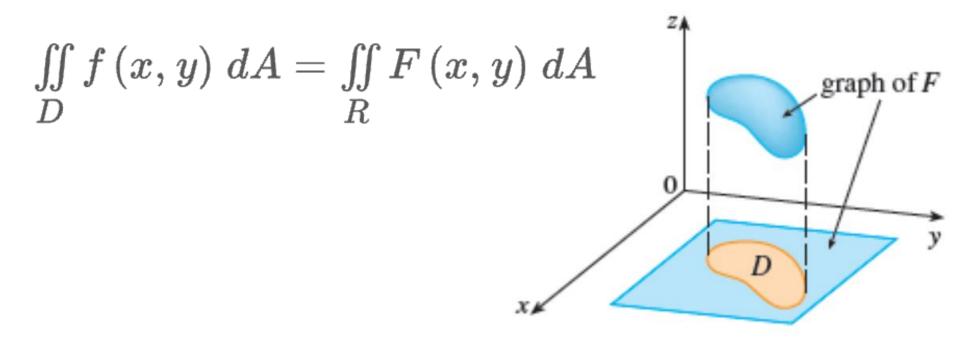
$$F(x, y) = \begin{cases} f(x, y) & \text{if } (x, y) \text{ is in } D \\ 0 & \text{if } (x, y) \text{ is in } R \text{ but not in } D \end{cases}$$

- Now, we want to integrate a 2-variable function f(x, y) over a general (compact) region *D*. How?
- 2. Extend the definition of f to the entire rectangle by defining another 2-variable function F(x, y) by...



Now, we want to integrate a 2-variable function f(x, y) over a general (compact) region D. How?

3. Then define the integral of f by...



We will learn how to integrate over 3 special types of regions in this section...

- 1) Type I regions
- 2) Type II regions
- 3) Regions that are finite disjoint unions of type I and type II regions (disjoint except for the boundaries)

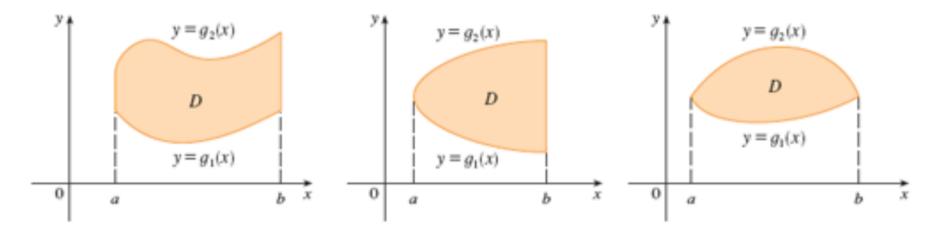
1. Double Integrals Over General Regions

Type I regions

A type I region is a region bounded by 2 functions of x from x = a to x = b.

$$D = \{ (x, y) \mid a \le x \le b, g_1(x) \le y \le g_2(x) \}$$

Some type I regions



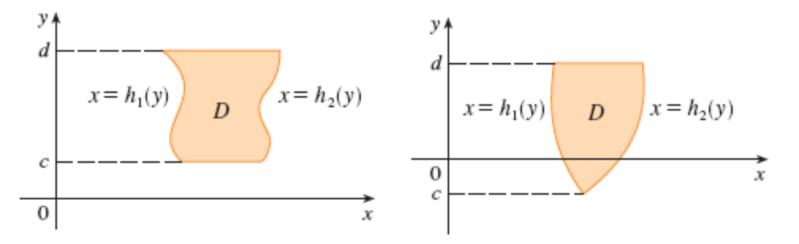
1. Double Integrals Over General Regions

Type II regions

A type II region is a region bounded by 2 functions of y from y = c to y = d.

$$D = \{ (x, y) \mid c \le y \le d , h_1(y) \le x \le h_2(y) \}$$

Some type II regions



Double Integral Over a Type I Or Type II Region To calculate a double integral of 2-variable function f(x, y) over a type I or type II region, set it up as an iterated integral by...

Type I: $\iint_{D} f(x, y) \, dA = \int_{a}^{b} \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx$

Type II:
$$\iint_D f(x, y) \ dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \ dx \ dy$$

Explain/why?

Double Integral Over a Type I Or Type II Region

To calculate a double integral of 2-variable function f(x, y) over a type I or type II region, set it up as an iterated integral by...

Type II:

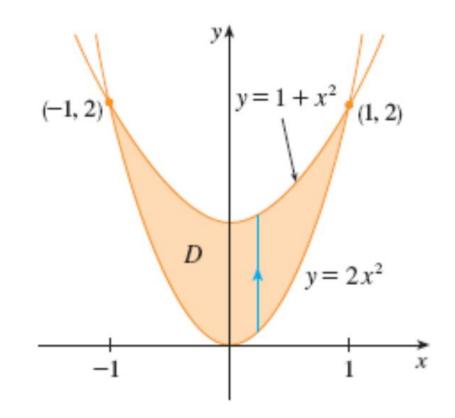
Type I:

$$\iint\limits_D f\left(x,y
ight)\, dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \; dy \; dx$$

$$\iint\limits_D f\left(x,y
ight)\, dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) \; dx \; dy$$

Ex 1: Evaluate $\iint_{D} x + 2y \, dA$, where *D* is the region bounded by the parabolas $y = 2x^2$ and $y = 1 + x^2$.

Ex 1: Evaluate $\iint_{D} x + 2y \, dA$, where *D* is the region bounded by the parabolas $y = 2x^2$ and $y = 1 + x^2$.



<u>Ex 2:</u>

Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$ and above the region *D* in the *xy*-plane bounded by the line y = 2x and the parabola $y = x^2$. (do twice)

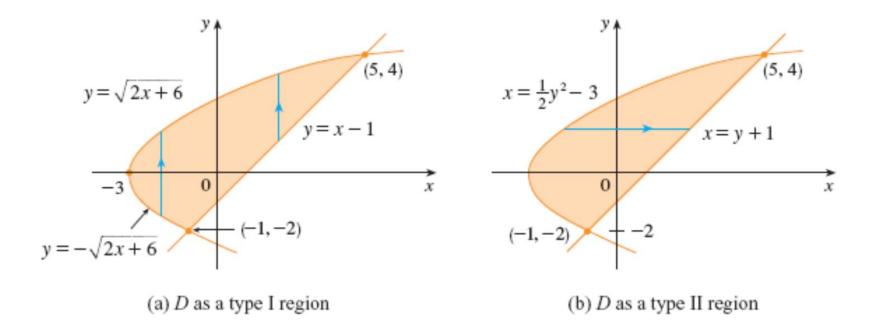
<u>Ex 2:</u>

Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$ and above the region *D* in the *xy*-plane bounded by the line y = 2x and the parabola $y = x^2$. (do twice)



Ex 3: Evaluate $\iint_{D} xy \, dA$, where *D* is the region bounded by the line y = x - 1and the parabola $y^2 = 2x + 6$. (do only as a type II region for now)

Ex 3: Evaluate $\iint_{D} xy \, dA$, where *D* is the region bounded by the line y = x - 1and the parabola $y^2 = 2x + 6$. (do only as a type II region for now)

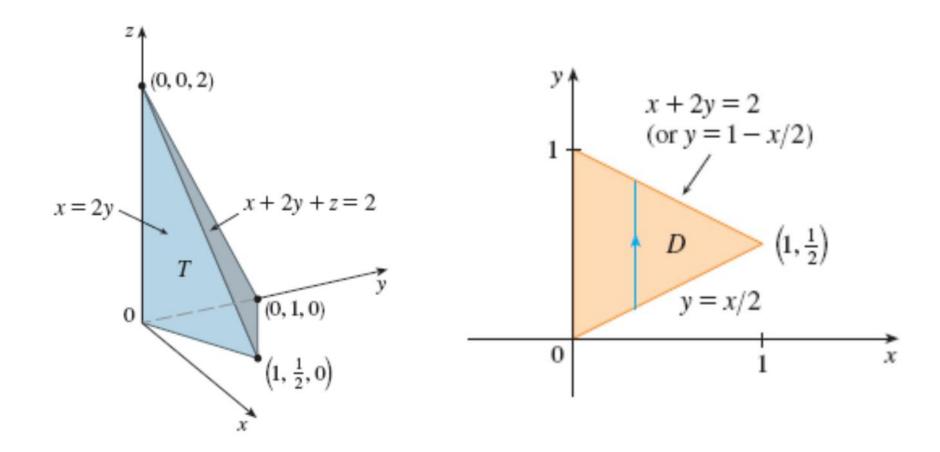


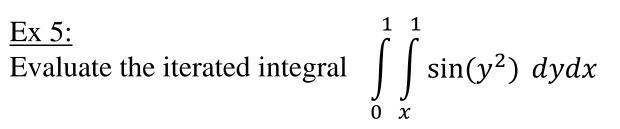
<u>Ex 4:</u>

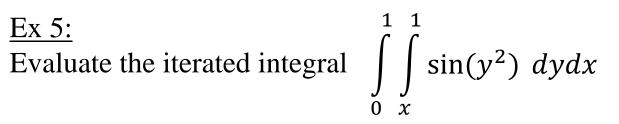
Find the volume of the tetrahedron bounded by the planes x + 2y + z = 2, x = 2y, x = 0, and z = 0.

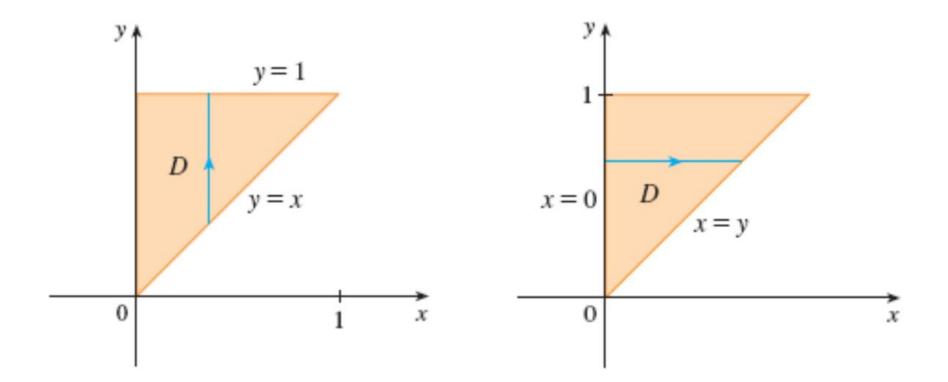
<u>Ex 4:</u>

Find the volume of the tetrahedron bounded by the planes x + 2y + z = 2, x = 2y, x = 0, and z = 0.









1. Double Integrals Over General Regions <u>Some properties of double integrals</u>

6
$$\iint_{D} \left[f\left(x,y\right) + g\left(x,y\right) \right] dA = \iint_{D} f\left(x,y\right) dA + \iint_{D} g\left(x,y\right) dA$$

7
$$\iint_{D} cf(x, y) dA = c \iint_{D} f(x, y) dA$$
 where c is a constant

If
$$f(x, y) \ge g(x, y)$$
 for all (x, y) in D , then

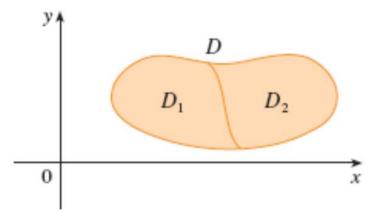
$$\iint_{D} f(x, y) \, dA \ge \iint_{D} g(x, y) \, dA$$

Some properties of double integrals

9

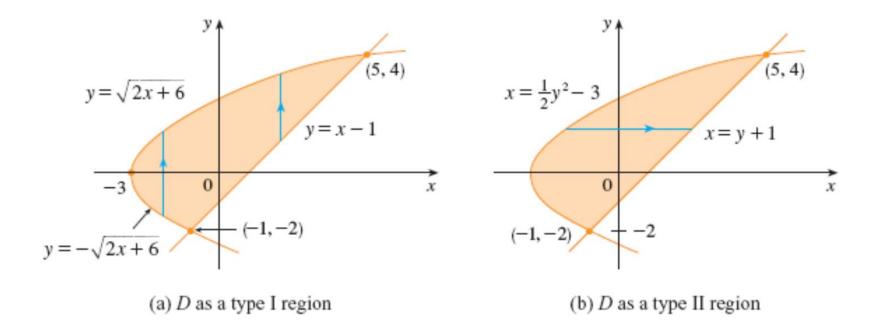
If $D = D_1 \cup D_2$, where D_1 and D_2 don't overlap except perhaps on their boundaries, then

$$\iint\limits_D f(x,y) \; dA = \iint\limits_{D_1} f(x,y) \; dA + \iint\limits_{D_2} f(x,y) \; dA$$



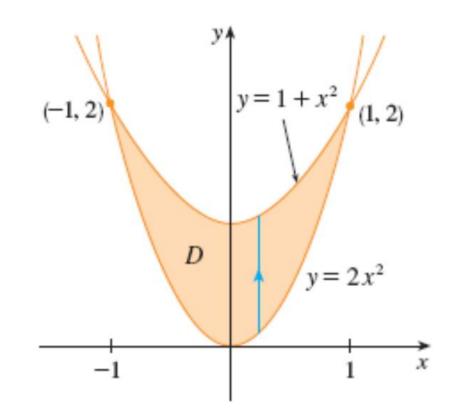
1. Double Integrals Over General Regions Some properties of double integrals If $D = D_1 \cup D_2$, where D_1 and D_2 don't overlap except perhaps on their boundaries, then 9 $\iint_{D} f(x,y) \ dA = \iint_{D} f(x,y) \ dA + \iint_{D} f(x,y) \ dA$ D 0 0 х х (a) D is neither type I nor type II. (b) $D = D_1 \cup D_2$, D_1 is type I, D_2 is type II.

Ex 3 again: Evaluate $\iint_{D} xy \, dA$, where *D* is the region bounded by the line y = x - 1and the parabola $y^2 = 2x + 6$. (do as a type I region)



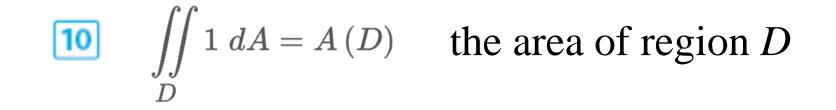
Ex 3 again: Evaluate $\iint_{D} xy \, dA$, where *D* is the region bounded by the line y = x - 1and the parabola $y^2 = 2x + 6$. (do as a type I region)

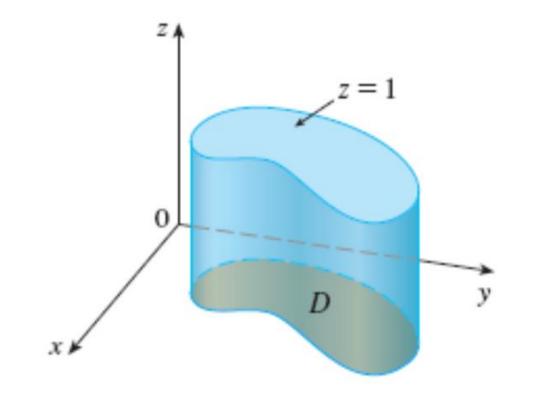
Ex 1 again: Evaluate $\iint_{D} x + 2y \, dA$, where *D* is the region bounded by the parabolas $y = 2x^2$ and $y = 1 + x^2$.



Ex 1 again: Evaluate $\iint_{D} x + 2y \, dA$, where *D* is the region bounded by the parabolas $y = 2x^2$ and $y = 1 + x^2$.

1. Double Integrals Over General Regions Some properties of double integrals





1. Double Integrals Over General Regions Some properties of double integrals

[11]

If $m \leq f(x, y) \leq M$ for all (x, y) in D, then $mA(D) \leq \iint_{D} f(x, y) \ dA \leq MA(D)$

<u>Ex 6</u>: Use property 11 to estimate $\iint_{D} e^{\sin x \cos y} dA$ where *D* is the disk whose center is the origin and whose radius is 2.